leaynin
‘ :?O%VL{ 7 Unidad 7 — Modelo de Objetos

Unidad 7
Modelo de Objetos

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

leaynin
‘ 'FO%%Z 7 Unidad 7 — Modelo de Objetos

Mysqli orientado a objetos.

Ejemplo de ejecucion de sentencias

Ejemplo #1 Conectando a MySQL

<?php

Smysqli = new mysqli("ejemplo.com", "usuario", "contrasefia", "basedato
s');

if (Smysqli->connect_errno) {

echo "Fallé la conexion con MySQL: (" . Smysqli-
>connect_errno . ") " . Smysqli->connect_error;

}

if (!Smysgli->query("DROP TABLE IF EXISTS test") | |
ISmysqli->query("CREATE TABLE test(id INT)") | |
ISmysqli->query("INSERT INTO test(id) VALUES (1)")) {
echo "Fallé la creacion de la tabla: (" . Smysqli-
>errno. ") " . Smysqli->error;

}

?>

Ejemplo #2 Navegacion a través de resultados

<?php

Smysqli = new mysqli("ejemplo.com", "usuario", "contrasefia", "basedato
S" :

if (Smysqli->connect_errno) {

echo "Fallé la conexidén a MySQL: (" . Smysqli-

>connect_errno . ") " . Smysqli->connect_error;

}

if (1Smysqgli->query("DROP TABLE IF EXISTS test") | |
ISmysqli->query("CREATE TABLE test(id INT)") | |
ISmysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {

echo "Fallé la creacion de la tabla: (" . Smysqli-

>errno . ") " . Smysqli->error;

}

Sresultado = Smysqli->query("SELECT id FROM test ORDER BY id ASC");
echo "Orden inverso..\n";
for (Snum_fila = Sresultado->num_rows - 1; Snum_fila >= 0; Snum_fila--
) {

Sresultado->data_seek(Snum_fila);

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

Q;l %ﬂzni na
— CTA Unidad 7 — Modelo de Objetos

Sfila = Sresultado->fetch_assoc();

echo"id =". Sfila['id'] . "\n";

}

echo "Orden del conjunto de resultados...\n";
Sresultado->data_seek(0);

while (Sfila = Sresultado->fetch_assoc()) {
echo "id =" . Sfila['id"] . "\n";

}

?>
El resultado del ejemplo seria:

Orden inverso...

id=3
id=2
id=1
Orden del conjunto de resultados...
id=1
id=2
id=3

Las bases de datos MySQL soportan sentencias preparadas. Una sentencia preparada o una
sentencia parametrizada se usa para ejecutar la misma sentencia repetidamente con gran
eficiencia.

Flujo de trabajo basico:

La ejecucion de sentencias preparadas consiste en dos etapas: la preparacién y la ejecucion. En la
etapa de preparacion se envia una plantilla de sentencia al servidor de bases de datos. El servidor
realiza una comprobacidn de sintaxis e inicializa los recursos internos del servidor para su uso
posterior.

El servidor de MySQL soporta el uso de pardmetros de sustitucidon posicionales anénimos con ?.

La preparacidn es seguida de la ejecucion. Durante la ejecucion el cliente vincula los valores de los
parametros y los envia al servidor. El servidor crea una sentencia desde la plantilla de la sentencia
y los valores vinculados para ejecutarla usando los recursos internos previamente creados.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

leaining
; “;(7%&‘1 J Unidad 7 — Modelo de Objetos

Ejecucion repetida:

Una sentencia preparada se puede ejecutar repetidamente. En cada ejecucién el valor actual de la
variable vinculada se evalla y se envia al servidor. La sentencia no se analiza de nuevo. La plantilla
de la sentencia no es transferida otra vez al servidor.

Cada sentencia preparada ocupa recursos del servidor. Las sentencias deberian cerrarse
explicitamente inmediatamente después de su uso. Si no se realiza explicitamente, la sentencia
sera cerrada cuando el gestor de la sentencia sea liberado por PHP.

Usar una sentencia preparada no es siempre la manera mas eficiente de ejecutar una sentencia.
Una sentencia preparada ejecutada una sola vez causa mas viajes de ida y vuelta desde el cliente
al servidor que una sentencia no preparada. Es por esta razén que si debo preparar una sentencia
gue luego se ejecutard una sola vez conviene ejecutarla directamente a través de mysqli_query().

Veamos un ejemplo:

<?php

Smysqli = new mysqli("localhost", "root", "", "login");

/* check connection */

if (mysqli_connect_errno()) {

printf("Connect failed: %s\n", mysqli_connect_error());

exit();

}

Suser = "juan";

Spass = "juan1234";

/* create a prepared statement

Creo una sentencia preparada en la cual reemplazaré los marcadores ?
por los valores correspondientes con bind->param

*/

if (Sstmt = Smysgli->prepare("SELECT nombre, apellido, email, dni FROM
usuarios WHERE usuario=? AND password=?")) {

/* bind parameters for markers

bool mysqli_stmt::bind_param (string Stypes , mixed &Svarl [,
mixed &S...])

El método bind_param recibe como primer pardmetro un string con
los tipos de datos que se enviaran para cada uno de los marcadores
establecidos en el prepare segun las siguientes posibilidades:

i la variable correspondiente es de tipo entero

d la variable correspondiente es de tipo double

s la variable correspondiente es de tipo string

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

leaynin
‘ FO% f 7 Unidad 7 — Modelo de Objetos

b la variable correspondiente es un blob y se envia en
paquetes
Y a continuacidn los valores para los marcadores en el orden en
que deben ser reemplazados

*/

Sstmt->bind_param("ss", Suser, Spass);

/* execute query */

Sstmt->execute();

/* bind result variables

Vincula variables a la sentencia preparada, en este caso nombre,
apellido, email, dni

*/

Sstmt->bind_result(Snombre, Sapellido, Semail, Sdni);

/* fetch value */

Sstmt->fetch();

printf("Los datos para el user y pass ingresados son: %s %s %s
%s", Snombre, Sapellido, Semail, Sdni);

/* close statement */

Sstmt->close();

}

/* close connection */

Smysqli->close(); ?>

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

j;il eny ning
— CTA Unidad 7 — Modelo de Objetos

La extension Objetos de Datos de PHP (PDO por sus siglas en inglés) define una interfaz ligera para
poder acceder a bases de datos en PHP. Cada controlador de bases de datos que implemente la
interfaz PDO puede exponer caracteristicas especificas de la base de datos, como las funciones
habituales de la extension.

PDO viene con PHP 5.1, y estd disponible como una extensidon PECL para PHP 5.0; PDO requiere las
caracteristicas nuevas de OO del nucleo de PHP 5, por lo que no se ejecutara con versiones
anteriores de PHP.

Las conexiones se establecen creando instancias de la clase base PDO. No importa el controlador
gue se utilice; siempre se usara el nombre de la clase PDO. El constructor acepta pardmetros para
especificar el origen de datos (conocido como DSN) y, opcionalmente, el nombre de usuario y la
contrasefia (si la hubiera).

Ejemplo #1 Conectarse a MySQL
<?php
Sgbd = new PDO('mysql:host=localhost;dbname=test', Susuario, Scontrase
fia);
>

Si hubiera errores de conexidn, se lanzara un objeto PDOException. Se puede capturar la
excepcion si fuera necesario manejar la condicién del error, o se podria optar por dejarla en
manos de un gestor de excepciones global de una aplicacion configurado mediante
set_exception_handler()

Ejemplo #2 Manejo de errores de conexion
<?php
try {
Sgbd = new PDO('mysql:host=localhost;dbname=test', Susuario, Scont
rasefia);
foreach(Sgbd->query('SELECT * from FOQ') as S$fila) {
print_r(Sfila);
}
Sgbd = null;
} catch (PDOException Se) {

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

learnin
;O%WZ ﬁ Unidad 7 — Modelo de Objetos

print "iError!: " . Se->getMessage() . "
";
die();
}

>

Una vez realizada con éxito una conexion a la base de datos, sera devuelta una instancia de la
clase PDO al script. La conexion permanecera activa durante el tiempo de vida del objeto PDO.
Para cerrar la conexion, es necesario destruir el objeto asegurandose de que todas las referencias
a él existentes sean eliminadas (esto se puede hacer asignando NULL a la variable que contiene el
objeto). Si no se realiza explicitamente, PHP cerrara automaticamente la conexion cuando el script
finalice.

Ejemplo #3 Cerrar una conexion
<?php
Sgbd = new PDO('mysql:host=localhost;dbname=test', Susuario, Scontrase
fia);
// Use la conexién aqui
// ya se ha terminado; la cerramos
Sgbd = null;
>

Veamos un ejemplo completo de conexidn y consulta de los datos de una tabla utilizando los
métodos de la clase:

<?php

Sdsn = 'mysql:dbname=personas;host=127.0.0.1";
Susuario = "root';

Scontrasefia = '";

try {

Sgbd = new PDO(Sdsn, Susuario, Scontrasefia);
} catch (PDOException Se) {

echo 'Fallé la conexidn: ' . Se->getMessage();

}

Sresult = Sgbd->query("select * from personas");
Srow = Sresult->fetchAll();

var_dump(Srow);

foreach (Srow as Sfila){

echo Sfila['id_persona'].'
';

}

var_dump(Srow);

>

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

