leaynin
‘ :?O%VL{ 7 Unidad 7 — Modelo de Objetos

Unidad 7
Modelo de Objetos

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

j?l. ?/L % 1nq
CTAL Unidad 7 — Modelo de Objetos

Modelo de Objetos

Vamos a ver algunos conceptos mads que forman parte del paradigma de programacion orientado
a objetos.

El polimorfismo, junto con el encapsulamiento y la herencia, forman parte de los pilares basicos
de la programacién orientada a objetos.

El polimorfismo, como su nombre indica, sugiere multiples formas. En programacion cuando
hablamos de polimorfismo nos referimos a la capacidad de acceder a multiples funciones a través
del mismo interfaz. Es decir que un mismo identificador, o funcidon puede tener diferentes
comportamientos en funcién del contexto en el que sea ejecutado.

El polimorfismo es un concepto dificil de entender en un primer momento y en mi opinién PHP no
nos ayuda demasiado en este aspecto, al no ser este un lenguaje de programacion fuertemente
tipado.

Su implementacidn varia en funcién del lenguaje de programacién. En algunos casos para
establecer una relacidn polimérfica es necesario que cada uno de los objetos implicados
compartan una misma raiz, siendo entonces necesario establecer una jerarquia de clases. Este es
el caso de los lenguajes de programacién fuertemente tipados como Java.

Para el caso que nos ocupa vamos a estudiar el polimorfismo en PHP estableciendo una jerarquia
de clases, ya que nos resultara mas facil portar el mismo ejemplo a otros lenguajes.

éComo se implementa el polimorfismo?

A continuacion veremos un ejemplo de cdmo implementar una llamada polimérfica al método de
un objeto.

Para ello vamos a crear una sencilla jerarquia de clases donde tendremos una clase base llamada
"classPoligono" y sus respectivas clases extendidas: "classTriangulo"”, "classCuadrado”,
"classRectangulo”. Cada una de estas clases tendrd un método en comun que se llamard "calculo"
y cuya funcién serd la de mostrar la formula matematica para el calculo del area de la figura

geométrica en cuestion.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

leaynin
‘ ;0% Z 7 Unidad 7 — Modelo de Objetos

Una vez que hemos definido nuestras clases crearemos la funcidn que se encargara de hacer la
llamada polimdrfica al método "calculo" cuya ejecucidén variara dependiendo del objeto que lo
implementa.

<?php

/*

Empezaremos definiendo la jerarquia de clases
*/

class classPoligono

{

function calculo()

{

echo 'El area depende del tipo de poligono';

}
}

class classCuadrado extends classPoligono

{

function calculo()

{

echo 'area de un cuadrado : a=I*I
';

class classRectangulo extends classPoligono

{

function calculo()

{

echo 'drea de un rectangulo : a=b*h
';
}
}

class classTriangulo extends classPoligono

{

function calculo()

{

echo 'area de un triangulo : a=(b*h)/2
';
}
}

/* fin definicion de la jerarquia de clases */

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

leaining
; §0%ﬂi J Unidad 7 — Modelo de Objetos

/*

definicion de la funcién encargada de realizar las llamadas polimérficas al método "calculo"
A destacar que en la definicion de la funcion definimos el tipo pardmetro que pasamos por
referencia, esto no es obligatorio en PHP, pero nos ayuda a entender el concepto y asi poder
aplicarlo en otros lenguajes mas estrictos.*/

function area(classPoligono Sobj)

{

Sobj->calculo();

}
/*

Creamos los objetos necesarios

*/

Scuadrado = new classCuadrado;
Srectangulo = new classRectangulo;
Striangulo = new classTriangulo;

/*

Ejecutamos la funcion encargada de realizar la llamada polimorfica
*/

area(Scuadrado);

area(Srectangulo);

area(Striangulo);

>

Conclusiones finales

Al ejecutar el ejemplo anterior vemos que la funcion "area" nos muestra la formula correcta en
cada una de sus ejecuciones para cada tipo de figura geométrica, pese a que en su definicidn
inicial hayamos especificado que el objeto es del tipo "classPoligono", haciendo referencia a la
clase base de cada objeto. Esto seria necesario en algunos lenguajes en los cuales nos hace falta
un nexo comun a cada uno de los objetos, y la Unica forma es de utilizar la clase base comun a
cada uno de ellos.

Como he comentado anteriormente en PHP esta definicién no seria necesario, ya que no es un
lenguaje en el que sea obligatorio especificar el tipo de una variable en su definicion, por lo que en
este aspecto es muchos menos estricto que otros lenguajes de programacion. Sin embargo, si que
seria necesario en otros lenguajes como Java mucho mas estrictos.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

?l%mzninq
OTA J Unidad 7 — Modelo de Objetos

Interfases

En el punto anterior hablamos del polimorfismo en PHP y vimos como podiamos establecer una
relacidn polimérfica creando una jerarquia de clases. Establecimos un vinculo entre diferentes
objetos a través de un elemento comun, en este caso su clase base o ancestra.

Ahora hablaremos de un sistema bastante comun por los programadores, para establecer un
punto de unidn entre objetos de diferente naturaleza, logrando el polimorfismo necesario en una
determinada funcidn.

La interfaz es el recurso ideal para la implementacién del polimorfismo, ya que la interfaz es un
conjunto de declaraciones de funciones o métodos sin incluir su codificacidn, dejando a la clase
que implementa la interfaz esta tarea.

A continuaciéon, modificaremos el ejemplo visto en el punto anterior para adaptarlo a la utilizacién
de interfaces.

<?php

/* Empezaremos definiendo la interface */
interface Poligono

{

function calculo();

}

/* A continuacion defino las clases que implementan la
interface */
class classCuadrado implements Poligono

{

function calculo()

{

echo 'area de un cuadrado : a=I*I
';

}
}

class classRectangulo implements Poligono

{

function calculo()

{

echo 'area de un rectangulo : a=b*h
';

}
}

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

leaynin
- '?O%ﬁbf ﬁ Unidad 7 — Modelo de Objetos

class classTriangulo implements Poligono

{

function calculo()

{

echo 'area de un triangulo : a=(b*h)/2
',
}
}

/* definicion de la funcion encargada de realizar las llamadas polimérficas al método
"calculo"

A destacar que en la definicidn de la funcion definimos el tipo pardmetro que pasamos por
referencia, esto no es obligatorio en PHP, pero nos ayuda a entender el concepto y asi poder
aplicarlo en otros lenguajes mas estrictos. */

function area(Poligono Sobj)

{

Sobj->calculo();

}
/*

Creamos los objetos necesarios

*/

Scuadrado = new classCuadrado;
Srectangulo = new classRectangulo;
Striangulo = new classTriangulo;

/*

Ejecutamos la funcion encargada de realizar la llamada polimorfica
*/

area(Scuadrado);

area(Srectangulo);

area(Striangulo);

>

Conclusiones finales

Al probar el ejemplo comprobamos el comportamiento polimérfico de la funcién "area",
mostrando diferentes resultados en funcién del contexto en el que se esta ejecutando dicha
funcién. Por lo tanto, hemos logrado establecer una relacién polimérfica con objetos de distinta
naturaleza gracias a la utilizacion de interfaces, sin la necesidad de establecer una jerarquia de
clases.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

j?l %/L f nINQ
CTAL Unidad 7 — Modelo de Objetos

Otras caracteristicas propias de las interfaces a tener en cuenta:

e Todos los métodos definidos en una interfaz, deben ser codificados en la clase que
implementa dicha interfaz.

e Laclase que implemente la interfaz debe utilizar exactamente las mismas estructuras de
métodos que fueron definidos en la interfaz.

e Las interfaces se pueden extender al igual que las clases mediante el operador extends.

e Una clase puede implementar diferentes interfaces.

e Unainterfaz no se puede instanciar y todos sus métodos son publicos dada la propia
naturaleza de la interfaz.

e Una interfaz no puede contener ni atributos, ni métodos implementados, solo
declaraciones de métodos y constantes.

Clases abstractas

Las clases abstractas son similares a las clases normales en su construccidn y concepto, aunque se
diferencian de estas en 2 aspectos fundamentales:

e Una clase abstracta no puede ser instanciada, no podremos crear objetos a partir de ellas,

e Una clase abstracta puede incorporar métodos abstractos. Los métodos abstractos son
aquellos que solo existe su declaracion, dejando su implementacidn a las futuras clases
extendidas o derivadas.

Importante

Todos los métodos declarados como abstractos, deberan pertenecer necesariamente a una clase
abstracta. Es decir que una clase normal no podremos definir un método como abstracto.

Una clase abstracta tiene la misma estructura que una clase normal, solo es necesario afiadir la
palabra clave abstract al inicio de su declaracién.

Veamos un sencillo ejemplo para comprobarlo:
<?php

/* Definimos la clase abstracta */
abstract class Poligono

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

@ Fienpring

Unidad 7 — Modelo de Objetos

{

//A continuacion declaramos el metodo abstracto a
implementar en las clases derivadas
abstract function calculo();

}
/*

A continuacion defino las clases dereivadas que van a
extender el funcionamiento de la clase base Poligono
(abstracta)

*/

class classCuadrado extends Poligono

{

function calculo()

{
echo 'area de un cuadrado : a=I*I
';
}
}

class classRectangulo extends classPoligono

{

function calculo()

{

echo 'area de un rectangulo : a=b*h
';
}

}

class classTriangulo extends classPoligono

{

function calculo()

{

echo 'area de un triangulo : a=(b*h)/2
';
}

}

/*

definicion de la funcion encargada de realizar las

llamadas polimorficas al metodo "calculo"

A destacar que en la definicion de la funcion definimos

el tipo parametro que pasamos por referencia, esto no es
obligatorio en PHP, pero nos ayuda a entender el concepto y
asi poder aplicarlo en otros lenguajes mas estrictos.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

Q;l %ﬂzni na
— CTA Unidad 7 — Modelo de Objetos

*/
function area(Poligono Sobj)

{

Sobj->calculo();

}
/*

Creamos los objetos necesarios

*/

Scuadrado = new classCuadrado;
Srectangulo = new classRectangulo;
Striangulo = new classTriangulo;

/*

Ejecutamos la funcion encargada
de realizar la llamada polimorfica
*/

area(Scuadrado);
area(Srectangulo);
area(Striangulo);

>

Analizando este ejemplo anterior, podriamos no tener muy claro dénde esta la diferencia entre
una clase abstracta y una interfaz, y cuando utilizar un recurso u otro, ya que aparentemente
tienen la misma funcionalidad.

La principal diferencia entre ambas reside en el concepto para el que fueron concebidos. Una
interfaz no es ni mas ni menos que un conjunto de declaraciones a codificar en las diferentes
clases que las implementan. Mientras que una clase abstracta es creada como primer paso a la
creacion de una jerarquia de clases. La interfaz es utilizada como punto de unién entre objetos de
diferente naturaleza, mientras que la clase abstracta sirve como punto de partida para la
definicidon de un objeto a través de una jerarquia de clases.

Existen también las correspondientes diferencias técnicas, derivadas de su concepcion:
e Una interfaz no puede contener métodos o atributos implementados, mientras que en las

clases abstractas si que es posible incluirlos.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

‘ ;Z?ﬂ« ? " I n q
— CTAL Unidad 7 — Modelo de Objetos

e Una clase solo puede heredar de una clase abstracta, mientras que una misma clase puede
implementar varias interfaces.

e El encapsulamiento es posible en las clases abstractas (public, private, protected, final,
etc), mientras que en una interfaz dada su naturaleza todos los métodos son declarados
como public.

Pensar en términos de objetos es muy parecido a cdmo lo hariamos en la vida real. Por ejemplo,
vamos a pensar en un coche para tratar de modelizarlo en un esquema de POO. Diriamos que el
coche es el elemento principal que tiene una serie de caracteristicas, como podrian ser el color, el
modelo o la marca. Ademas, tiene una serie de funcionalidades asociadas, como pueden ser
ponerse en marcha, parar o aparcar.

Pues en un esquema POO el coche seria el objeto, las propiedades serian las caracteristicas como
el color o el modelo y los métodos serian las funcionalidades asociadas como ponerse en marcha
o parar.

Por poner otro ejemplo vamos a ver cdmo modelizariamos en un esquema POO una fraccién, es
decir, esa estructura matematica que tiene un numerador y un denominador que divide al
numerador, por ejemplo 3/2.

La fraccion serd el objeto y tendra dos propiedades, el numerador y el denominador. Luego podria
tener varios métodos como simplificarse, sumarse con otra fraccién o nimero, restarse con otra
fraccion, etc.

Estos objetos se podran utilizar en los programas, por ejemplo, en un programa de matematicas
hards uso de objetos fraccidon y en un programa que gestione un taller de coches utilizaras objetos
coche. Los programas Orientados a objetos utilizan muchos objetos para realizar las acciones que
se desean realizar y ellos mismos también son objetos. Es decir, el taller de coches sera un objeto
que utilizara objetos coche, herramienta, mecanico, recambios, etc.

Teniendo en cuenta esto vamos a armar un ABM de productos con login de usuarios. Para ello
vamos a definir una clase Base de Datos, una clase Usuario y una clase Producto. Tanto la clase
Usuario como la clase Producto usaran la clase Base de Datos.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

‘ ?Z?ﬂ? " I n Aq
_— CTAL Unidad 7 — Modelo de Objetos

MYSQLI ORIENTADO A OBJETOS Y PDO

Una Interfaz de Programacion de Aplicaciones, o API, define las clases, métodos, funciones y
variables que necesitard llamar una aplicacién para llevar a cabo una tarea determinada. En el
caso de las aplicaciones de PHP que necesitan comunicarse con un servidor de bases de datos, las
APIs necesarias se ofrecen generalmente en forma de extensiones de PHP.

Las APIs pueden ser procedimentales u orientadas a objetos. Con una API procedimental invocan
funciones para llevar a cabo las tareas, mientras con una APl orientada a objetos se instancian
clases, y entonces se invocan a métodos de los objetos creados. Entre ambas opciones, la segunda
es generalmente la via recomendada, puesto que estd mads actualizada y conlleva una mejor
organizacién de cédigo.

Cuando se escriben aplicaciones PHP que necesitan conectar a un servidor MySQL, existen varias
opciones disponibles respecto a API. Este documento abarca esas opciones, y ayuda a elegir la
mejor solucién para cada aplicacién.

En la documentacién de MySQL, el término conector hace referencia al software que permite a
una aplicacion conectarse a un servidor de bases de datos MySQL. MySQL proporciona conectores
para ciertos lenguajes, entre ellos PHP.

Si una aplicaciéon de PHP necesita comunicarse con un servidor de bases de datos, necesitara
escribir el cédigo PHP que realice tareas tales como conectar al servidor de bases de datos,
realizar consultas y otras funciones relacionadas con bases de datos. Es necesario tener un
software instalado en el sistema que proporcione a la aplicacidon en PHP la API, que manejard la
comunicacidn entre el servidor de bases de datos y la aplicacién, posiblemente empleando en
caso necesario otras bibliotecas. A este software generalmente se le conoce como conector, dado
gue permite a una aplicacidn conectar con un servidor de bases de datos.

Un driver es un software disefiado para comunicarse con un tipo especifico de servidor de bases
de datos. Podria también invocar a una biblioteca, como por ejemplo la Biblioteca Cliente de

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

j?l. ?/L % 1nq
CTAL Unidad 7 — Modelo de Objetos

MySQL o el Driver Nativo de MySQL. Estas bibliotecas implementan el protocolo de bajo nivel que
se utiliza para comunicarse con el servidor de bases de datos.

A modo de ejemplo, la capa de abstraccién de bases de datos Objetos de Datos de PHP (PDO)
utilizara alguno de los drivers para bases de datos disponibles. Uno de ellos es el driver PDO
MYSQL, que permite comunicarse con un servidor MySQL.

A menudo la gente utiliza los términos conector y driver indistintamente. Esto puede dar lugar a
confusion. En la documentacion de MySQL, el término "driver" queda reservado para el software
gue proporciona la parte especifica de una base de datos dentro de un conector.

En la documentacién de PHP aparece otro término - extension. El cddigo fuente de PHP consiste
por un lado de un nucleo, y por otro de extensiones opcionales para el nucleo. Las extensiones de
PHP relacionadas con MySQL, tales como mysqli, y mysqgl, estdn implementadas utilizando el
framework de extensiones de PHP.

Tipicamente, una extensidn ofrece una APl al programador de PHP para permitirle hacer uso de
sus utilidades mediante cddigo. Sin embargo, algunas de las extensiones que utilizan el framework
de extensiones de PHP no ofrecen ninguna API al programador.

La extensidn del driver PDO MySQL, por ejemplo, no proporciona ninguna APl al programador
PHP, pero en su lugar ofrece una interfaz a la capa de PDO que tiene por encima.

No deben confundirse los términos APl y extension, dado que una extensién no debe
necesariamente proporcionar una APl al programador.

éCuales son las principales APIs que PHP ofrece para utilizar MySQL?
Hay tres APIs principales a la hora de considerar conectar a un servidor de bases de datos MySQL:

e Extension MySQL de PHP
e Extension mysqli de PHP
e Objetos de Datos de PHP (PDO)

Cada una tiene sus ventajas e inconvenientes. El siguiente apartado trata de dar una breve
introduccion a los aspectos clave de cada API.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

j?l. ?/L % 1nq
CTAL Unidad 7 — Modelo de Objetos

Esta es la extension original disefiada que permite desarrollar aplicaciones PHP que interactian
con bases de datos MySQL. La extensiéon mysql proporciona una interfaz procedural, y esta
pensada para usar solo con versiones de MySQL anteriores a la 4.1.3. Si bien esta extension se
puede utilizar con versiones de MySQL 4.1.3 o posteriores, no estaran disponibles todas las
nuevas funcionalidades del servidor MySQL.

La extensidn mysqli, o como a veces se le conoce, la extensién de MySQL mejorada, se desarrolld
para aprovechar las nuevas funcionalidades encontradas en los sistemas MySQL con version 4.1.3
o posterior. La extension mysqli viene incluida en las versiones PHP 5 y posteriores.

La extensidon mysqli contiene numerosos beneficios, siendo estas las mejoras principales respecto
a la extension mysql:

e Interfaz orientada a objetos

e Soporte para Declaraciones Preparadas
e Soporte para Multiples Declaraciones

e Soporte para Transacciones

e Mejoradas las opciones de depuracién
e Soporte para servidor empotrado

Ademas de la interfaz orientada a objetos, esta extensiéon también proporciona una interfaz
procedural.

La extensidon mysqli esta desarrollada mediante el framework de extensiones de PHP

Los Objetos de Datos de PHP, o PDO, son una capa de abstraccidon de bases de datos especificas
para aplicaciones PHP. PDO ofrece una APl homogénea para las aplicaciones PHP,
independientemente del tipo de servidor de bases de datos con el que se vaya a conectar la
aplicacion. En teoria, si se utiliza la APl PDO, se podria cambiar el servidor de bases de datos en
uso, por ejemplo, de Firebird a MySQL, y sélo se necesitarian algunos cambios menores en el
codigo PHP.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

B Fienng

Unidad 7 — Modelo de Objetos

Otros ejemplos de capas de abstraccién de bases de datos son JDBC para aplicaciones Java o DBI
para Perl.

A pesar de que PDO tiene sus ventajas, tales como una API limpia, sencilla y portable, su mayor
inconveniente es que no permite utilizar todas las funcionalidades avanzadas en la ultima versiéon

del servidor MySQL. Por ejemplo, PDO no permite hacer uso de las Declaraciones Multiples de
MysQL.

PDO esta desarrollado utilizando el framework de extensiones de PHP.

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

La siguiente tabla compara las funcionalidades de los tres principales métodos para conectar a

MySQL desde PHP:

- «El’ %Qz;u "y

Comparacion de las opciones de la APl de MySQL para PHP

Unidad 7 — Modelo de Objetos

Extensién mvsali PDO (Usando el driver Extensidn
. PHP‘" 9" PpO MysQLy el Driver || MysQL de
Nativo MySQL) PHP
Version de PHP en que se
. . q 5.0 5.0 Antes de 3.0
introdujo
|Incluidn con PHP 5.x ||S|' |5r ||5r
Estado de desarrollo de Desarrollo Desarrollo activo, desde (|Sdlo se le
MySQOL activo PHF 5.3 mantiene
Recomendado por MySQL |5 - opcidén S No
para nuevos proyectos recomendada
Soporte para juegos de]
porie para jueg Si Si No
caracteres
Soporte para Declaraciones
Preparadas en el lado del ||Si Si Mo
servidor
Soporte para Declaraciones
Preparadas en el lado del [No Si Mo
cliente
Soporte para
Procedimientos Si Si Mo
Almacenados
Soporte para Declaraciones |,
F . P Si Mayormente No
Multiples
Suporte para todas las
funcionalidades de My5QL ||Si Mayormente Mo
4.1+

Contacto: consultas@elearning-total.com

Web: www.elearning-total.com

mailto:consultas@elearning-total.com
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/
http://www.elearning-total.com/

